Correlation Between Blood Lactate and Salivary Biomarkers During Exercise in Women with Hypothyroidism Treated With L-Thyroxine
Downloads
Background: Hypothyroidism reduces circulating levels of thyroid hormones metabolic enzymatic activities, and the skeletal muscle's work capacity and lactatemia increase during exertion.
Objectives: To analyze salivary biomarkers and blood lactate obtained in exercise stages through exhaustion and investigate their correlation.
Methods: Eight females attended the University Clinical Hospital who showed a condition of subclinical hypothyroidism. Before they began replacing with L-thyroxine, they were submitted to an ergometric test to check their tolerance to effort. Eight weeks after treatment, all volunteers were again submitted to lab and ergometric tests. Saliva and blood were collected to determine total protein, nitric oxide, IgA, lactate, and lipid profile.
Results: The present study identified a correlation (0.8), so the behavior of the blood lactate could explain the behavior of the salivary of total proteins by 74.22% (R2 = 0.7422). Lactate production was minimized when women underwent L-thyroxine treatment in the first six stages of exercise. Still, total salivary proteins increased for pharmacotherapy between stages 1 and 8. While salivary nitric oxide had a percentage variation between pre- and post-exercise times of 96% before the start of treatment when the same exercise was performed after eight weeks of treatment with L-Thyroxine, this variation was 150%.
Conclusion: The measurement of STP is an essential marker of stress, and it is highly correlated with the most used blood marker, lactate. Regarding treatment with L-Thyroxine in women with subclinical hypothyroidism, after eight weeks of this therapy, it was possible to observe a reduction in blood lactate production after the incremental load test on a cycle ergometer, accompanied by a reduction in the concentration of SA. SNO and SIgA tended to increase in women undergoing treatment, and this treatment should be considered in subsequent studies as causing a different effect on these markers.
Ahmaidi, S., Varray, A., Collomp, K., Mercier, J., & Prefaut, C. (1992). Relation between the change of slope of heart rate and second lactic and ventilatory thresholds in muscular exercise with large load. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 186(1-2), 145-155. https://europepmc.org/article/med/1450988
Bassini, A., & Cameron, L. C. (2014). Sportomics: building a new concept in metabolic studies and exercise science. Biochemical and Biophysical Research Communications, 445, 708-716. https://doi.org/10.1016/j.bbrc.2013.12.137
Bishop, N. C., Blannin, A. K., Armstrong, E. D. W. A. R. D., Rickman, M. I. C. H. E. L. L. E., & Gleeson, M. I. C. H. A. E. L. (2000). Carbohydrate and fluid intake affect the saliva flow rate and IgA response to cycling. Medicine and science in sports and exercise, 32(12), 2046-2051. https://doi.org/10.1097/00005768-200012000-00013
Bishop, N. C., Walker, G. J., Scanlon, G. A., Richards, S. T. E. P. H. E. N., & Rogers, E. (2006). Salivary IgA responses to prolonged intensive exercise following caffeine ingestion. Medicine and science in sports and exercise, 38(3), 513-519. https://doi.org/10.1249/01.mss.0000187412.47477.ee
Bocanegra, O. L., Diaz, M. M., Teixeira, R. R., Soares, S. S., & Espindola, F. S. (2012). Determination of the lactate threshold by means of salivary biomarkers: chromogranin A as novel marker of exercise intensity. European journal of applied physiology, 112, 3195-3203. https://doi.org/10.1007/s00421-011-2294-4
Bodis, S., & Haregewoin, A. (1993). Evidence for the release and possible neural regulation of nitric oxide in human saliva. Biochemical and Biopysical research communications, 194(1), 347-350. https://doi.org/10.1006/bbrc.1993.1826
Bortolini, M. S., De Agostini, G. G., Reis, I. T., Silva Lamounier, R. P. M., Blumberg, J. B., & Espindola, F. S. (2009). Total protein of whole saliva as a biomarker of anaerobic threshold. Research quarterly for exercise and sport, 80(3), 604-610. http://dx.doi.org/10.1080/02701367.2009.10599599
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Chatterton Jr, R. T., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary α‐amylase as a measure of endogenous adrenergic activity. Clinical physiology, 16(4), 433-448. https://doi.org/10.1111/j.1475-097x.1996.tb00731.x
Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International journal of sports medicine, 13(07), 518-522. https://doi.org/10.1055/s-2007-1021309
Cohen, J. (1992). Quantitative methods in psychology, “A power primer”. Psychological Bulletin, 112, 155-159. https://doi.org/10.1037//0033-2909.112.1.155
da Silva, P. L., de Castro Matta, N. L., Verli, M., Gonçalves, L. C. O., & de Magalhães Neto, A. M. (2023). Lactato De Ontem, Hoje E Perspectivas Futuras Para As Ciências Da Saúde. Revista Eletrônica Interdisciplinar, 15(2), 397-408. http://revista.univar.edu.br/rei/article/view/299
de Castro, A. V. B., Bononi, A. P., Aragon, F., Padovani, C. R., Nogueira, C. R., da Silva Mazeto, G. M., & de Paula Pimenta, W. (2001). Avaliação clínica e laboratorial de portadores de hiperlipidemia e hipotireoidismo. Arq Bras Cardiol, 76(2), 119-122. http://publicacoes.cardiol.br/abc/2001/7602/7602003.pdf
de Souza, D. C., Matos, V. A., Dos Santos, V. O., Medeiros, I. F., Marinho, C. S., Nascimento, P. R., Dorneles, G. P., Peres, A., Muller, C. H., Krause, M., Costa, E., & Fayh, A. P. (2018). Effects of high-intensity interval and moderate-intensity continuous exercise on inflammatory, leptin, IgA, and lipid peroxidation responses in obese males. Frontiers in physiology, 9, 567. https://doi.org/10.3389/fphys.2018.00567
Franco-Martinez, L., Tvarijonaviciute, A., Martínez-Subiela, S., Márquez, G., Martínez Díaz, N., Cugat, R., Cerón, J. J., and Jiménez-Reyes, P. (2019). Changes in lactate, ferritin, and uric acid in saliva after repeated explosive effort sequences. Journal of Sports Medicine and Physical Fitness, 59(6), 902-909. https://doi.org/10.23736/S0022-4707.18.08792-3
Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force‐directed placement. Software: Practice and experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.4380211102
Galvão, A. S., Gomes, M. K. M., Freitas, N. C. S., Macedo, L. S., Oliveira, D. M., Verli, M. V. A., Nahon, R. L., Goncalves, L. C. O., & Magalhães-Neto, A. M. (2023). Machine learning in sports medicine: A new approach in human exercise. Journal of Human Sport and Exercise, 18(2), 501-508. https://doi.org/10.14198/jhse.2023.182.19
Gomes, M. K. M., de Abreu Verli, M. V., dos Santos Macedo, L., Galvão, A. S., Freitas, N. C. S., Nahon, R. L., Maghalaes-Neto, A. M., & Gonçalves, L. C. O. (2023). Multivariate analysis by exploratory machine learning model indicates orienteering race as an immunometabolically safe stimulus, but with differences between age groups. Journal of Physical Education and Sport, 23(2), 372-378. https://doi.org/10.7752/jpes.2023.02044
Gonçalves, L. C., Bessa, A., Freitas-Dias, R., Luzes, R., Werneck-de-Castro, J. P. S., Bassini, A., & Cameron, L. C. (2012). A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. Journal of the International Society of Sports Nutrition, 9, 1-9. https://doi.org/10.1186/1550-2783-9-30
Gonçalves, L. C., Magalhães-Neto, A. M., Bassini, A., Prado, E. S., Muniz-Santos, R., Verli, M. V., Jurisica, L., Lopes, J. S. S., Jurisica, I., Andrade C. M. B., & Cameron, L. C. (2022). Sportomics suggests that albuminuria is a sensitive biomarker of hydration in cross combat. Scientific Reports, 12(1), 8150. https://doi.org/10.1038/s41598-022-12079-7
Granger, D. L., Taintor, R. R., & Boockvar, K. S. (1995). Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction. Methods, 7(1), 78-83. https://doi.org/10.1006/meth.1995.1011
Hiscock, N., & Pedersen, B. K. (2002). Exercise-induced immunodepression–plasma glutamine is not the link. Journal of Applied Physiology, 93(3), 813-822. https://doi.org/10.1152/japplphysiol.00048.2002
Kaminsky, P., Klein, M., Robin-Lherbier, B., Walker, P., Escanye, J. M., Brunotte, F., Robert, J., & Duc, M. (1991). 31P-NMR study of different hypothyroid states in rat leg muscle. American Journal of Physiology-Endocrinology and Metabolism, 261(6 Pt 1), E706-E712. https://doi.org/10.1152/ajpendo.1991.261.6.e706
Kaminsky, P., Robin-Lherbier, B., Brunotte, F., Escanye, J. M., Klein, M., Robert, J., & Duc, M. (1992). Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorus magnetic resonance spectroscopy. The Journal of Clinical Endocrinology & Metabolism, 74(1), 124–129. https://doi.org/10.1210/jcem.74.1.1727810
Kanniainen, M., Pukkila, T., Kuisma, J., Molkkari, M., Lajunen, K., & Räsänen, E. (2023). Estimation of physiological exercise thresholds based on dynamical correlation properties of heart rate variability. Frontiers in Physiology, 14, 1299104. https://doi.org/10.3389/fphys.2023.1299104
Karmen, C., Gietzelt, M., Knaup-Gregori, P., & Ganzinger, M. (2019). Methods for a similarity measure for clinical attributes based on survival data analysis. BMC medical informatics and decision making, 19, 1-14. https://doi.org/10.1186/s12911-019-0917-6
Khoramipour, K., Sandbakk, Ø., Keshteli, A. H., Gaeini, A. A., Wishart, D. S., & Chamari, K. (2022). Metabolomics in exercise and sports: A systematic review. Sports Medicine, 52(3), 547-583. https://doi.org/10.1007/s40279-021-01582-y
Klein, I., & Ojamaa, K. (1998). Thyrotoxicosis and the heart. Endocinol Metab. Clin. North Am, 27(1), 51-62. https://doi.org/10.1016/s0889-8529(05)70297-8
Mackinnon, L. T., & Jenkins, D. G. (1993). Decreased salivary immunoglobulins after intense interval exercise before and after training. Medicine and science in sports and exercise, 25(6), 678-683. https://europepmc.org/article/med/8321104
McAllister, R. M., & Laughlin, M. H. (2006). Vascular nitric oxide: effects of physical activity, importance for health. Essays in biochemistry, 42, 119-131. https://doi.org/10.1042/bse0420119
Mercier, J., Mercier, B., & Prefaut, C. (1989). Participation of lactic anaerobic metabolism during short and intense repeated exercises. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 183(1), 60-66. https://europepmc.org/article/med/2528396
Monzani, F., Caraccio, N., Siciliano, G., Manca, L., Murri, L., & Ferrannini, E. (1997). Clinical and biochemical features of muscle dysfunction in subclinical hypothyroidism. The Journal of Clinical Endocrinology & Metabolism, 82(10), 3315-3318. https://doi.org/10.1210/jcem.82.10.4296
Nahon, R. L., Lazzoli, J. K., Verli, M. V. D. A., Goncalves, L. C. O., & Magalhaes Neto, A. M. D. (2023). Machine Learning exploratory technic detected that men might be up to eight times more affected by the control effect and three times more affected by the placebo effect than women. bioRxiv, 2023-04. https://doi.org/10.32474/OSMOAJ.2023.06.000239
Nater, U. M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., & Ehlert, U. (2005). Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology, 55(3), 333-342. https://doi.org/10.1016/j.ijpsycho.2004.09.009
Navazesh, M. (1993). Methods for collecting saliva. Annals of the New York Academy of Sciences, 694(1), 72-77. https://doi.org/10.1111/j.1749-6632.1993.tb18343.x
Panossian, A. G., Oganessian, A. S., Ambartsumian, M., Gabrielian, E. S., Wagner, H., & Wikman, G. (1999). Effects of heavy physical exercise and adaptogens on nitric oxide content in human saliva. Phytomedicine, 6(1), 17-26. https://doi.org/10.1016/s0944-7113(99)80030-0
Prampero, S. L., Gonçalves, L. C. O., Mourão, N. R. D. M., Lopes, J. S. S., França, E. L., França, A. H., & Neto, A. M. M. (2024). The double product breakpoint as predictor of stress and the correlation between IL-12 and biomarkers in athletes. Journal of Physical Education and Sport, 24(2), 456 – 463. https://doi.org/10.7752/jpes.2024.02056
Rodrigues de Araujo, V., Lisboa, P., Boaventura, G., Caramez, F., Pires, L., Oliveira, E., Moura, E., & Casimiro-Lopes, G. (2018). Acute high-intensity exercise test in soccer athletes affects salivary biochemical markers. Free radical research, 52(8), 850-855. https://doi.org/10.1080/10715762.2018.1481288
Silberzahn, R., & Uhlmann, E. L. (2015). Crowdsourced research: Many hands make tight work. Nature, 526(7572), 189-191. https://doi.org/10.1038/526189a
Silva, D. A., Gervásio, A. M., Sopelete, M. C., Arruda-Chaves, E., Arruda, L. K., Chapman, M. D., Sung, S. J., & Taketomi, E. A. (2001). A sensitive reverse ELISA for the measurement of specific IgE to Der p 2, a major Dermatophagoides pteronyssinus allergen. Annals of Allergy, Asthma & Immunology, 86(5), 545-550. https://doi.org/10.1016/s1081-1206(10)62903-1
Steerenberg, P. A., van Asperen, I. A., Amerongen, A. N., Biewenga, J., Mol, D., & Medema, G. (1997). Salivary levels of immunoglobulin A in triathletes. European Journal of Oral Sciences, 105(4), 305-309. https://doi.org/10.1111/j.1600-0722.1997.tb00245.x
Toler, J. E., & Burrows, P. M. (2010). Genotypic performance over environmental arrays: A non-linear grouping protocol. Journal of Applied Statistics, 25(1), 131-143. https://doi.org/10.1080/02664769823368
Turner, R. J., & Sugiya, H. (2002). Understanding salivary fluid and protein secretion. Oral diseases, 8(1), 3-11. https://doi.org/10.1034/j.1601-0825.2002.10815.x
Walsh, N. P. (1999). The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. Journal of sports sciences, 17(2), 129-134. https://doi.org/10.1080/026404199366226
Walsh, N. P., Montague, J. C., Callow, N., & Rowlands, A. V. (2004). Saliva flow rate, total protein concentration and osmolality as potential markers of whole body hydration status during progressive acute dehydration in humans. Archives of oral biology, 49(2), 149-154. https://doi.org/10.1016/j.archoralbio.2003.08.001
Yamaguchi, M., Kanemori, T., Kanemaru, M., Takai, N., Mizuno, Y., & Yoshida, H. (2004). Performance evaluation of salivary amylase activity monitor. Biosensors and Bioelectronics, 20(3), 491-497. https://doi.org/10.1016/j.bios.2004.02.012
Zajac, A., Poprzecki, S., Maszczyk, A., Czuba, M., Michalczyk, M., & Zydek, G. (2014). The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients, 6(7), 2493-2508. https://doi.org/10.3390/nu6072493
Copyright (c) 2024 Romeu Paulo Martins Silva, Alexandre Gonçalves, Carolina Freitas da Silva, Miguel Júnior Sordi Bortolini, Elmiro Santos Resende, Luis Carlos Oliveira Gonçalves, Aníbal Monteiro de Magalhães-Neto, Foued Salmen Espindola
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.