Design of a Mobile Carbon Monoxide (CO) Monitoring Device for Air Quality Mapping
DOI:
https://doi.org/10.58905/jse.v6i1.589Keywords:
Air quality, Carbon monoxide, IoT, Mobile monitoring, Sensor systemAbstract
Air pollution monitoring in urban areas requires portable and real-time solutions to overcome the limitations of fixed monitoring stations. This study aims to design and develop a mobile carbon monoxide (CO) monitoring device to support urban air quality mapping. The proposed system integrates Internet of Things (IoT) technology, including the MiCS-4514 gas sensor, ESP32 microcontroller, Bluetooth, and Wi-Fi communication. Data transmission is conducted through the MQTT protocol to the Antares cloud platform. To ensure consistent measurement in motion, the device is equipped with a protective air chamber, DC pump, and flowmeter with a constant airflow of 1 liter per minute. Sensor calibration using the span gas method achieved a relative standard deviation of 1.58%, within the acceptable threshold and confirming valid precision. Field testing was conducted in two scenarios: static (indoor and outdoor) and mobile. Static tests demonstrated that sensor performance is highly influenced by wind direction and proximity to emission sources. Mobile tests were performed across three routes in Bandung City, covering a total of approximately 24 km during morning, midday, and evening periods. The average CO concentrations recorded were 3.76 ppm, 2.90 ppm, and 3.93 ppm, respectively. The highest detection rate, 7.8%, occurred during midday monitoring. The developed device successfully detected spatial CO distribution in real-time under dynamic conditions. This research contributes to the development of adaptive and efficient mobile air quality monitoring technologies, supporting data-driven environmental decision-making and potential integration with smart city systems.
Downloads
References
Winatama, Derystanto, dan S. W. (2023). Analisis Kualitas Udara pada Kawasan Transportasi, Industri, Perkotaan, Permukiman, dan Perdagangan di Kota Tegal, Jurnal Ilmu Lingkungan, Vol. 21, No. 2, 381–386. doi:10.14710/jil.21.2.381-386
Jiyal, S.; Sheetlani, J.; Saini, R. K. (2022). Internet of Things: A Survey on Air Pollution Monitoring, Challenges and Applications, Proceedings of the 2022 7th International Conference on Computing, Communication and Security, ICCCS 2022 and 2022 4th International Conference on Big Data and Computational Intelligence, ICBDCI 2022, 1–6. doi:10.1109/ICCCS55188.2022.10079635
Wang, J.; Zhao, Y.; Xu, M. (2022). Distribution Characteristics of Six Criteria Air Pollutants Under Different Air Quality Levels in Cangzhou City, China, Journal of Health and Environmental Research, Vol. 8, No. 1, 9. doi:10.11648/j.jher.20220801.12
Rambing, V. V; Umboh, J. M. L.; Warouw, F. (2022). Literature Review: Gambaran Risiko Kesehatan pada Masyarakat akibat Paparan Gas Karbon Monoksida (CO), Kesmas, Vol. 11, No. 4, 95–101
Fairuz Rofifah Arifin; Nazwa Aulia Rahman. (2024). Analisis Pengaruh Emisi Zat Karbon terhadap Kerusakan Kualitas Udara dan Pencemaran Lingkungan, Journal Innovation In Education, Vol. 2, No. 1, 278–287. doi:10.59841/inoved.v2i1.1043
Ruviana, R.; Setyawan, A.; Musniati, N. (2022). Relationship of Exposure to Carbon Monoxide and other factors with Blood Pressure of Motorcycle Workshop Workers in Pancoran Mas Subdistrict, Depok City, Jurnal Keselamatan Kesehatan Kerja Dan Lingkungan, Vol. 3, No. 1, 45–51. doi:10.25077/jk3l.3.1.45-51.2022
Rizaldi, M. A.; Azizah, R.; Latif, M. T.; Sulistyorini, L.; Salindra, B. P. (2022). Literature Review: Dampak Paparan Gas Karbon Monoksida Terhadap Kesehatan Masyarakat yang Rentan dan Berisiko Tinggi, Jurnal Kesehatan Lingkungan Indonesia, Vol. 21, No. 3, 253–265. doi:10.14710/jkli.21.3.253-265
Din, D.; Hasanuddin, Z. B.; Panggalo, S. (2024). Rancang Bangun Sistem Pemantauan Kualitas Udara Berbasis Internet of Things (IoT) Menggunakan Thingspeak dan Website, Jurnal EKSITASI, Vol. 3, No. 1, 17–22
Shevchenko, D. V.; Holub, B. L. (2025). Regression analysis as a tool for identifying patterns in atmospheric air monitoring data, CEUR Workshop Proceedings, Vol. 3943, 20–27
Feng, S.; Law, C. L. (2002). Assisted GPS and its impact on navigation intelligent transportation systems, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Vols 2002-January, No. September, 926–931. doi:10.1109/ITSC.2002.1041344
Mus Mulyadi Usman. (2020). Rancang Bangun Aplikasi MonitoringKetinggian Air Sungai Berbasis Internet ofThings Menggunakan Amazon Web Service, Jurnal Teknik Elektro Dan Komputer, Vol. 9, No. 2, 73–80
Bragiwibisana, B.; Fikra Titan, F. T. S.; Permatasari, I. (2025). Pengiriman Data Sensor Untuk Deteksi Logam Yang Bersifat Metal Dengan Menggunakan Platform Antares, Jurnal SINTA: Sistem Informasi Dan Teknologi Komputasi, Vol. 1, No. 4, 191–199. doi:10.61124/sinta.v1i4.31
Hart, E. M.; Barmby, P.; LeBauer, D.; Michonneau, F.; Mount, S.; Mulrooney, P.; Poisot, T.; Woo, K. H.; Zimmerman, N. B.; Hollister, J. W. (2016). Ten Simple Rules for Digital Data Storage, PLoS Computational Biology, Vol. 12, No. 10, 1–12. doi:10.1371/journal.pcbi.1005097
Hadi, A.; Ahmad Subarja, J. A. S.; Firdaus, I. F. (2017). Validasi Metode Kalibrasi Gas Analyzer Untuk Pengukuran O2, Co, No, No2, So2, Ch4, Dan H2S Secara Perbandingan Langsung Dengan Ceritified Span Gas, Jurnal Ecolab, Vol. 11, No. 2, 62–71. doi:10.20886/jklh.2017.11.2.62-71
Pitalokasari, O. D.; Fiqri, S.; Ayudia, D. (2021). Validasi Metode Pengujian Biochemical Oxygen Demand (BOD) Dalam Air Laut Secara Titrimetri Berdasarkan SNI 6989.72:2009, Ecolab, Vol. 15, No. 1, 63–75. doi:10.20886/jklh.2021.15.1.63-75
Horwitz, W.; Albert, R. (2006). The Horwitz ratio (HorRat): A useful index of method performance with respect to precision, Journal of AOAC International, Vol. 89, No. 4, 1095–1109. doi:10.1093/jaoac/89.4.1095
Winatama, Derystanto, dan S. W. (2023). Analisis Kualitas Udara pada Kawasan Transportasi, Industri, Perkotaan, Permukiman, dan Perdagangan di Kota Tegal, Jurnal Ilmu Lingkungan, Vol. 21, No. 2, 381–386. doi:10.14710/jil.21.2.381-386
Jiyal, S.; Sheetlani, J.; Saini, R. K. (2022). Internet of Things: A Survey on Air Pollution Monitoring, Challenges and Applications, Proceedings of the 2022 7th International Conference on Computing, Communication and Security, ICCCS 2022 and 2022 4th International Conference on Big Data and Computational Intelligence, ICBDCI 2022, 1–6. doi:10.1109/ICCCS55188.2022.10079635
Wang, J.; Zhao, Y.; Xu, M. (2022). Distribution Characteristics of Six Criteria Air Pollutants Under Different Air Quality Levels in Cangzhou City, China, Journal of Health and Environmental Research, Vol. 8, No. 1, 9. doi:10.11648/j.jher.20220801.12
Rambing, V. V; Umboh, J. M. L.; Warouw, F. (2022). Literature Review: Gambaran Risiko Kesehatan pada Masyarakat akibat Paparan Gas Karbon Monoksida (CO), Kesmas, Vol. 11, No. 4, 95–101
Fairuz Rofifah Arifin; Nazwa Aulia Rahman. (2024). Analisis Pengaruh Emisi Zat Karbon terhadap Kerusakan Kualitas Udara dan Pencemaran Lingkungan, Journal Innovation In Education, Vol. 2, No. 1, 278–287. doi:10.59841/inoved.v2i1.1043
Ruviana, R.; Setyawan, A.; Musniati, N. (2022). Relationship of Exposure to Carbon Monoxide and other factors with Blood Pressure of Motorcycle Workshop Workers in Pancoran Mas Subdistrict, Depok City, Jurnal Keselamatan Kesehatan Kerja Dan Lingkungan, Vol. 3, No. 1, 45–51. doi:10.25077/jk3l.3.1.45-51.2022
Rizaldi, M. A.; Azizah, R.; Latif, M. T.; Sulistyorini, L.; Salindra, B. P. (2022). Literature Review: Dampak Paparan Gas Karbon Monoksida Terhadap Kesehatan Masyarakat yang Rentan dan Berisiko Tinggi, Jurnal Kesehatan Lingkungan Indonesia, Vol. 21, No. 3, 253–265. doi:10.14710/jkli.21.3.253-265
Din, D.; Hasanuddin, Z. B.; Panggalo, S. (2024). Rancang Bangun Sistem Pemantauan Kualitas Udara Berbasis Internet of Things (IoT) Menggunakan Thingspeak dan Website, Jurnal EKSITASI, Vol. 3, No. 1, 17–22
Shevchenko, D. V.; Holub, B. L. (2025). Regression analysis as a tool for identifying patterns in atmospheric air monitoring data, CEUR Workshop Proceedings, Vol. 3943, 20–27
Feng, S.; Law, C. L. (2002). Assisted GPS and its impact on navigation intelligent transportation systems, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Vols 2002-January, No. September, 926–931. doi:10.1109/ITSC.2002.1041344
Mus Mulyadi Usman. (2020). Rancang Bangun Aplikasi MonitoringKetinggian Air Sungai Berbasis Internet ofThings Menggunakan Amazon Web Service, Jurnal Teknik Elektro Dan Komputer, Vol. 9, No. 2, 73–80
Bragiwibisana, B.; Fikra Titan, F. T. S.; Permatasari, I. (2025). Pengiriman Data Sensor Untuk Deteksi Logam Yang Bersifat Metal Dengan Menggunakan Platform Antares, Jurnal SINTA: Sistem Informasi Dan Teknologi Komputasi, Vol. 1, No. 4, 191–199. doi:10.61124/sinta.v1i4.31
Hart, E. M.; Barmby, P.; LeBauer, D.; Michonneau, F.; Mount, S.; Mulrooney, P.; Poisot, T.; Woo, K. H.; Zimmerman, N. B.; Hollister, J. W. (2016). Ten Simple Rules for Digital Data Storage, PLoS Computational Biology, Vol. 12, No. 10, 1–12. doi:10.1371/journal.pcbi.1005097
Hadi, A.; Ahmad Subarja, J. A. S.; Firdaus, I. F. (2017). Validasi Metode Kalibrasi Gas Analyzer Untuk Pengukuran O2, Co, No, No2, So2, Ch4, Dan H2S Secara Perbandingan Langsung Dengan Ceritified Span Gas, Jurnal Ecolab, Vol. 11, No. 2, 62–71. doi:10.20886/jklh.2017.11.2.62-71
Pitalokasari, O. D.; Fiqri, S.; Ayudia, D. (2021). Validasi Metode Pengujian Biochemical Oxygen Demand (BOD) Dalam Air Laut Secara Titrimetri Berdasarkan SNI 6989.72:2009, Ecolab, Vol. 15, No. 1, 63–75. doi:10.20886/jklh.2021.15.1.63-75
Horwitz, W.; Albert, R. (2006). The Horwitz ratio (HorRat): A useful index of method performance with respect to precision, Journal of AOAC International, Vol. 89, No. 4, 1095–1109. doi:10.1093/jaoac/89.4.1095
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yogi Adi Nugraha, Emir Husni ; Galang Adira Prayoga

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.